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1 Introduction

GOAL: method to experimentally character-
ize angle- and frequency-dependent reflec-
tion coefficients of medium interfaces (here: 
water-air interface)

HOW TO REACH: 3D finite-difference (FD) 
injection technique in the space-time 
domain to separate the recorded wave field 
and extrapolate the separated constituents 
to the reflecting interface1,2

2 FD injection method

record p(t) and vz(t)

FD calculation on
homogeneous model

separation into 
pi(t) and -pr(t)

separation into
-pi(-t) and pr(-t)

backward extrapolation 
of reflected field:
• p (-t) → dipole source

• vz (-t) → monopole 
                  source

forward extrapolation 
of incident field:
• p (t) → dipole source

• vz (t) → monopole 
                 source

obtain pi at
location of reflector

obtain pr at
location of reflector
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3 Wavefield separation and extrapolation
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Fig. 1. Time-separated incident and 
reflected wave field
(a) Experimental setup. The pressure is 
recorded at different depth levels to 
calculate the vertical particle velocity. 
(b) Separation into incident and reflected 
wave field at the recording surface. 
(c) Forward and backward extrapolation 
to reflecting interface.

→ artefact in backward 
extrapolation due to limited 
aperture
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Fig. 2. Overlapping of incident and 
reflected wave field
(a) Experimental setup. 
(b) Separation into incident and reflected 
wave field at the recording surface. 
(c) Forward and backward extrapolation 
to reflecting interface.

→ artefact is reduced in 
backward extrapolation

5 Reflection coefficient
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calculation of R in the 
space-frequency 
domain:

Fig. 3. Experimentally determined reflection coefficients for a frequency of 
5kHz, calculated along a line. The pink area indicates the FD spatial resolution 
error.

6 Conclusion

• separation and extrapolation in space-time 
domain 
• robust for incidence angles up to 60° for 
broadband wave fields
• crucial requirement to reduce limited aper-
ture effects: recording surface close to reflec-
tor
• future studies: frequency-dependent prob-
lems including fluid-fluid and fluid-solid inter-
faces
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