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Summary 

 

Heterodyne distributed vibration sensing (hDVS) is one of the techniques for distributed acoustic sensing (DAS) 

to record seismic data using an optical fibre. The conventional hDVS data processing method suffers from 

nonlinear response of the hDVS system to strain measurement. To improve the hDVS data processing, we 

investigate the numerical application of Marchenko redatuming, which retrieves the Green’s response to a 

virtual source inside the unknown medium from single-sided reflection measurement. We build a forward model 

for the recorded hDVS signal. It is heterodyned down to the intermediate frequency from the optical frequency, 

where the laser pulse propagates physically inside the fibre and multiple scattering has strong impacts. We 

derive the Marchenko equations for the hDVS signal and find that the same causality argument holds. Without 

knowledge of the fibre medium, we iteratively retrieve the Green’s response to a desired virtual source inside 

the fibre from the hDVS signal recorded at one end of the fibre. The redatumed Green’s functions have the 

potential to clean up hDVS raw data, handle multiple scattering, and improve strain estimation. 
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Introduction 

Heterodyne distributed vibration sensing (hDVS) is a technique for distributed acoustic sensing (DAS) 

to record seismic data using an optical fibre (Hartog et al., 2013). The conventional hDVS processing 

method suffers from nonlinear response of the hDVS system to strain measurement, which may result, 

in part, from the complex waveform interference and multiple-scattering process inside the fibre. Recent 

research on Marchenko redatuming has shown that the Green’s response to a virtual source inside the 

medium can be retrieved from single-sided reflection measurement. Becker et al. (2016) first perform 

Marchenko focusing physically in a simple 1D sound wave tube. In this paper, we investigate 

Marchenko redatuming numerically on a 1D fibre model with complex inhomogeneity distributions. 

The redatumed Green’s response can potentially improve hDVS data processing. 

Modelling the hDVS system 

We derive a forward model of the hDVS signal recorded from a static single-mode fibre. For simplicity, 

all the phase drift and noise associated with the real hDVS experiment are neglected. In a typical hDVS 

acquisition system (Figure 1), a laser source emits monochromatic light at the optical frequency 𝜔0

(e.g., 193 THz). The Fourier spectrum of this carrier signal is 

𝐶(𝜔) =
1

2
[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)] (1) 

where 𝛿 is the Dirac delta function. An acousto-optic modulator then shapes the carrier signal to a short 

pulse. This process is modelled as windowing the carrier signal with a Gaussian-shaped envelope, 

whose Fourier spectrum is 𝐸(𝜔) and its maximum frequency 𝜔𝐸 ≪ 𝜔0:

𝐶𝐸(𝜔) = 𝐶(𝜔) ∗ 𝐸(𝜔) =
1

2
[𝐸(𝜔 − 𝜔0) + 𝐸(𝜔 + 𝜔0)] (2) 

where ∗ denotes convolution. The acousto-optic modulator also increases the frequency of the 

modulated pulse 𝐶𝐸 by the intermediate frequency ∆𝜔 (e.g., 110 MHz), so the output is

𝑋(𝜔) = 𝐶𝐸(𝜔 − 𝑠𝑔𝑛(𝜔)∆𝜔) =
1

2
[𝐸(𝜔 − 𝜔0 − ∆𝜔) + 𝐸(𝜔 + 𝜔0 + ∆𝜔)]. (3) 

The interrogation pulse 𝑋 is then sent into the optical fibre where it is partially reflected by natural 

impurities. Taking the fibre as a 1D acoustic medium, we model the impurities as a normal distribution 

of small-scale scatters with random density contrasts relative to the fibre core material (Figure 2a). With 

a source (solid star) and a receiver (solid triangle) at one end of the fibre, its impulse reflection response 

𝑅 is modelled by the propagator matrix method (Margrave, 2015), in which single-scattering (primaries 

only) and multiple-scattering (primaries and internal multiples) effects can be modelled separately. 

From Figure 2b, we can see that the single-scattering model breaks down at about 109 Hz and higher,

where the amplitude of the reflection coefficients becomes larger than 1. The optical frequency regime 

has strong multiple-scattering effects compared to the intermediate frequency regime. We may set the 

density contrasts too large, making the scattering effects much stronger than the real case, but the same 

physical principle holds. The backscattered signal is 

𝑌(𝜔) = 𝑋(𝜔)𝑅(𝜔) =
1

2
[𝐸(𝜔 − 𝜔0 − ∆𝜔) + 𝐸(𝜔 + 𝜔0 + ∆𝜔)]𝑅(𝜔). (4) 

It is then mixed with the carrier signal and a balanced receiver measures its intensity 

𝐼(𝜔) = [𝑌(𝜔) + 𝐶(𝜔)] ∗ [𝑌(𝜔) + 𝐶(𝜔)]. (5) 

The balanced receiver strips out the DC component and a bandpass filter (𝐵) removes all the 

components at the optical frequencies for sampling 

𝐻(𝜔) = 𝐵[𝐼(𝜔)] =
1

2
[𝐸(𝜔 − ∆𝜔)𝑅(𝜔 + 𝜔0) + 𝐸(𝜔 + ∆𝜔)𝑅(𝜔 −𝜔0)]. (6) 

Since the recorded signals are real in the time domain, we only need to specify their Fourier coefficients 

for positive frequencies. And by defining 
1

2
𝐸(𝜔 − ∆𝜔) as an equivalent wavelet 𝑊(𝜔) at the frequency

∆𝜔, we model the recorded hDVS signal heterodyned from the optical frequency as 

�̂�(𝜔) = 𝑊(𝜔)𝑅(𝜔 + 𝜔0), 𝜔 > 0. (7)



79th EAGE Conference & Exhibition 2017  
Paris, France, 12-15 June 2017 

Figure 1 Block diagram of the hDVS acquisition system. 

Figure 2 (a) Fibre model with random scatter distribution. (b) Fibre impulse reflection response in the 

frequency domain. (c) Signals at ∆𝜔 of single and multiple scattering without heterodyning. (d) hDVS 

signals of single and multiple scattering heterodyned from the optical frequency.   

For comparison, assuming that we send the equivalent wavelet into the fibre and record the 

backscattered signal directly, the signal at ∆ω without heterodyning is modelled as 

�̃�(𝜔) = 𝑊(𝜔)𝑅(𝜔). (8) 

Figure 2a plots the red equivalent wavelet in depth. Figure 2c plots the time-domain signals at ∆𝜔 

showing weak multiple-scattering effects. Figure 2d plots the time-domain hDVS signals heterodyned 

from the optical frequency showing much stronger multiple-scattering effects. 

Marchenko redatuming of the hDVS signal 

Wapenaar et al. (2013) introduce the so-called focusing functions 𝑓1
± in Marchenko redatuming based

on a truncated medium, which is the same as the actual medium above a desired virtual source (hollow 

star in Figure 2a) and is reflection-free below it. The focusing functions are defined as 

𝑇(𝜔)𝑓1
+(𝜔) = 1,  (9) 

𝑅𝐴(𝜔)𝑓1
+(𝜔) = 𝑓1

−(𝜔) (10) 

where 𝑇 and 𝑅𝐴 are the broadband transmission and reflection response of the truncated medium. The

focusing functions relate the impulse reflection response 𝑅 measured at one end of the fibre to the 

broadband upgoing and downgoing Green’s response 𝐺± to a desired virtual source inside the fibre:

𝐺−(𝜔) = 𝑅(𝜔)𝑓1
+(𝜔) − 𝑓1

−(𝜔), (11) 

𝐺+(𝜔) = −𝑅(𝜔)𝑓1
−∗(𝜔) + 𝑓1

+∗(𝜔). (12)
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Here, 𝑅 is the fibre response with the physical multiple-scattering effects. We can write the first 

Marchenko equation for the signal at the intermediate frequency as 

�̃�−(𝜔) = 𝑅(𝜔)𝑓1
+(𝜔) − 𝑓1

−(𝜔) (13) 

with �̃�−(𝜔) = 𝐺−(𝜔)𝑊(𝜔) and 𝑓1
±(𝜔) = 𝑓1

±(𝜔)𝑊(𝜔) being the Green’s and focusing functions at

the intermediate frequency without heterodyning. This is the conventional Marchenko equation for 

bandlimited data. To redatum the hDVS signal, we rewrite the first Marchenko equation as 

𝐺−(𝜔) = 𝑅(𝜔 +𝜔0)𝑓1
+(𝜔) − 𝑓1

−(𝜔) (14) 

with 𝐺−(𝜔) = 𝐺−(𝜔 + 𝜔0)𝑊(𝜔) and 𝑓1
±(𝜔) = 𝑓1

±(𝜔 + 𝜔0)𝑊(𝜔) being the Green’s and focusing

functions heterodyned from the optical frequency. Similar equations can be derived for the second 

Marchenko equation. To clearly show the Marchenko focusing wavefield, we simplify the fibre model 

to contain two scatters only and the equivalent wavelet to have shorter wavelength (Figure 3a). 

Assuming the truncated fibre model was known, we compute the focusing functions and reconstruct the 

Green’s wavefields for the signal at the intermediate frequency without heterodyning (Figure 3b) and 

for the hDVS signal with heterodyning (Figure 3c). In either case, the wavefield at negative time is the 

acausal Green’s function retrieved by Marchenko redatuming whereas the wavefield at positive time is 

the causal Green’s function directly modelled by igniting a real source. Their antisymmetry about time 

zero verifies that Marchenko redatuming retrieves Green’s functions correctly for the signal at the 

intermediate frequency as well as the hDVS signal. Note that the wavepaths are the same kinematically 

in both cases but the latter seems to have rapidly varying phase. 

Iterative Marchenko scheme of the hDVS signal 

In real hDVS acquisition, we have no access to the truncated fibre information, but it is possible to solve 

the underdetermined Marchenko equations using the causality properties. We retrieve the Green’s 

response to the virtual source inside the more realistic fibre model (Figure 2a) by iterative substitution 

(van der Neut et al., 2015) assuming the fibre model is unknown. As a benchmark, we directly calculate 

the heterodyned focusing functions 𝑓1
± (Figures 4a and 4b, blue) and Green’s function 𝐺 (Figure 4c,

blue) assuming the truncated fibre model is known. The traveltime of the transmitted direct arrival from 

the virtual source to the real source/receiver is denoted as 𝑡𝑑. As we can see, 𝑓1
+ is composed by a direct

arrival 𝑓1𝑑
+  centred at −𝑡𝑑 and a following coda 𝑓1𝑚

+  between −𝑡𝑑 and 𝑡𝑑; 𝑓1
− arrives roughly between

−𝑡𝑑 and 𝑡𝑑 (a few events after 𝑡𝑑 due to the relatively long wavelength in this example); all the events

of 𝐺 appear at and after 𝑡𝑑. Thus, the causality also holds for the heterodyned signals. A windowing

operator 𝜃{∙} applied to the coupled Marchenko equations for the heterodyned signals removes all the 

events arriving at and after 𝑡𝑑 and all the acausal events.

Figure 3 (a) Simplified fibre model. (b) Green’s wavefield to a source inside the fibre for the signal at 

∆𝜔 by Marchenko redatuming (acausal) and by direct modelling (causal). (c) Green’s wavefield to a 

source inside the fibre for hDVS signal by Marchenko redatuming (acausal) and by direct modelling 

(causal).  



79th EAGE Conference & Exhibition 2017  
Paris, France, 12-15 June 2017 

Figure 4 (a) Retrieved and known 𝑓1
+. (b) Retrieved and known 𝑓1

−. (c) Retrieved and directly modelled

𝐺. (d) Initial focusing function 𝑓1𝑑
+ . The vertical dotted lines denote the time 𝑡𝑑 and −𝑡𝑑.

𝜃{𝑅(𝜔 + 𝜔0)[𝑓1𝑑
+ (𝜔) + 𝑓1𝑚

+ (𝜔)]} = 𝑓1
−(𝜔), (15) 

𝜃{𝑅(𝜔 + 𝜔0)𝑓1
−∗(𝜔)} = 𝑓1𝑚

+∗(𝜔). (16) 

Taking the equivalent wavelet being shifted to −𝑡𝑑 as a crude estimate of 𝑓1𝑑
+  (Figure 4d), we solve (15)

and (16) iteratively. During each iteration, we propagate an updated focusing function into the fibre at 

the optical frequency, heterodyne the output signal down to the intermediate frequency, and apply the 

windowing operator. This numerical example converges after eight iterations. The retrieved 𝑓1
± (Figures

4a and 4b, red) and 𝐺 (Figure 4c, red) are compared to the known ones. Their difference may result

from the scaling error of the initial focusing function estimation. Also, the windowing operator cannot 

precisely separate the focusing functions and Green’s functions at −𝑡𝑑 or 𝑡𝑑 during each iteration, due

to the embedded complex waveform. 

Conclusions 

We model the hDVS signal as a time-domain convolution of an equivalent wavelet at the intermediate 

frequency and the fibre impulse response being shifted by the optical frequency, where waves propagate 

physically inside the fibre and multiple scattering has strong effects. We derive the Marchenko 

equations for the hDVS signal and find that the same causality argument holds. By iterative substitution, 

we retrieve the Green’s response to a desired virtual source inside the fibre from the hDVS signal 

recorded at one end of the fibre. The redatumed Green’s functions have the potential to clean up hDVS 

raw data, handle multiple scattering and improve strain estimation. 
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