Experimental Marchenko focusing in a variable diameter sound wave tube

668

Theodor Becker¹ **Patrick Elison¹** Dirk-Jan van Manen¹ Carly Donahue¹ Stewart Greenhalgh^{1,2} Filippo Broggini¹ Johan O.A. Robertsson¹

¹: ETH Zurich ²: now King Fahd University of Petroleum & Minerals

ETH zürich

Focusing: motivation

seismic imaging

(https://math.berkeley.edu/)

ETH zürich

Focusing: motivation

(http://www.wikipedia.org/)

Focusing: motivation

(http://www.wikipedia.org)

ETH zürich

Focusing: motivation

ETH zürich

Focusing: motivation

seismic imaging

(spmphysics.onlinetuition.com)

Redatuming the wavefield

Sound wave tube: hardware

ETH zürich

Sound wave tube: hardware

Sound wave tube: hardware

(2) receiver: ¹/₂" pressure-field microphone + pre-amplifier

Sound wave tube: hardware

Sound wave tube: theory

Restricting wave propagation to planar mode:

$f_0 = 1.841 c (\pi d)^{-1}$	(*)	$d [\mathrm{cm}]$	f_0 [kHz]
		2	10.0
 <i>f</i>₀: cut-off frequency <i>c</i>: propagation velocity in air <i>d</i>: tube diameter 		3	6.7
		4	5.0
		5	4.0
		6	3.4

Sound wave tube: theory

Restricting wave propagation to planar mode:

$f_0 = 1.841 c (\pi d)^{-1}$	(*)	$d \; [\mathrm{cm}]$	f_0 [kHz]
		2	10.0
 <i>f</i>₀: cut-off frequency <i>c</i>: propagation velocity in air <i>d</i>: tube diameter 		3	6.7
		4	5.0
		5	4.0
		6	3.4

Introducing impedance contrasts I

$$I = \rho c/S \quad (^{**})$$
$$R = (S_1 - S_2)(S_1 + S_2)^{-1}$$

S: cross-sectional area ρ : density

Sound wave tube: attenuation

Sound wave tube: attenuation

travel-time corrected arrivals

ETH zürich

Sound wave tube: attenuation

attenuation of 1 - 10 dB/m, depending on d and f

1

 $\times 10^{-3}$

Marchenko focusing

Reflection response

Marchenko focusing

Reflection response

- simulating lossless medium by correcting for attenuation
- remove direct wave and remove source signature
- apply the iterative Marchenko scheme (*) until convergence

Marchenko focusing

• Focusing function f_1^+

Marchenko focusing

Experimental validation

Conclusions

- first laboratory demonstration of 1D Marchenko focusing
- very good focusing quality, comparable to model driven focusing

Conclusions

- first laboratory demonstration of 1D Marchenko focusing
- very good focusing quality, comparable to model driven focusing
- processing is very sensitive to deconvolution with source signature
- removal of direct wave and time-windowing: limits minimum layer thickness
- free-surface multiples must be removed
- correction for propagation losses: some model knowledge required

Outlook

- increase model complexity
- imaging using Marchenko
- tube end reflections: Marchenko including surface multiples (*)
- dissipative Marchenko scheme (**)
- 3D experiments in WaveLab

References

Thank you!

- Rayleigh, J. W. S. (1896). The Theory of Sound. Macmillian and Co., London, 2nd edition.
- Rossing, T. D. (2014). Handbook of Acoustics. Springer, New York.
- Singh, S., Snieder, R., Behura, J., van der Neut, J., Wapenaar, C., and Slob, E. (2014). Marchenko imaging: Imaging with primaries, internal multiples, and free-surface mul- tiples. Geophysics, 80(5):S165–S174.
- Slob, E. (2016). Green 's function retrieval and Marchenko imaging in a dissipative acoustic medium. Physical Review Letters, 116(April): 164301– 1 – 164301–6.
- Wapenaar, K. (1993). Kirchhoff-Helmholtz downward extrapolation in a layered medium with curved interfaces. Geophysical Journal International, 115(2):445–455.
- Wapenaar, K., Thorbecke, J., van der Neut, J., Broggini, F., Slob, E., and Snieder, R. (2014). Marchenko imaging. Geophysics, 79(3):WA39– WA57.
- Wapenaar, K., Thorbecke, J., and van der Neut, J. (2016). A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time- reversal acoustics and interferometric Green's function retrieval. Geophysical Journal International, 205(1):531–535.